3.860 \(\int \frac{1}{x^4 (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=196 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b -
Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.422824, antiderivative size = 196, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1123, 1281, 1166, 205} \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b -
Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (a+b x^2+c x^4\right )} \, dx &=-\frac{1}{3 a x^3}+\frac{\int \frac{-3 b-3 c x^2}{x^2 \left (a+b x^2+c x^4\right )} \, dx}{3 a}\\ &=-\frac{1}{3 a x^3}+\frac{b}{a^2 x}-\frac{\int \frac{-3 \left (b^2-a c\right )-3 b c x^2}{a+b x^2+c x^4} \, dx}{3 a^2}\\ &=-\frac{1}{3 a x^3}+\frac{b}{a^2 x}+\frac{\left (c \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2}+\frac{\left (c \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2}\\ &=-\frac{1}{3 a x^3}+\frac{b}{a^2 x}+\frac{\sqrt{c} \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.136853, size = 216, normalized size = 1.1 \[ \frac{\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{2 a}{x^3}+\frac{6 b}{x}}{6 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

((-2*a)/x^3 + (6*b)/x + (3*Sqrt[2]*Sqrt[c]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(-b^2 + 2*a*c +
 b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqr
t[b^2 - 4*a*c]]))/(6*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.191, size = 368, normalized size = 1.9 \begin{align*} -{\frac{1}{3\,a{x}^{3}}}+{\frac{b}{{a}^{2}x}}-{\frac{c\sqrt{2}b}{2\,{a}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{{c}^{2}\sqrt{2}}{a}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}{b}^{2}}{2\,{a}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}b}{2\,{a}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{{c}^{2}\sqrt{2}}{a}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}{b}^{2}}{2\,{a}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(c*x^4+b*x^2+a),x)

[Out]

-1/3/a/x^3+b/a^2/x-1/2/a^2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*b+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-
b+(-4*a*c+b^2)^(1/2))*c)^(1/2))-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh
(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2+1/2/a^2*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(
x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^
(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^
2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate((b*c*x^2 + b^2 - a*c)/(c*x^4 + b*x^2 + a), x)/a^2 + 1/3*(3*b*x^2 - a)/(a^2*x^3)

________________________________________________________________________________________

Fricas [B]  time = 1.70473, size = 3343, normalized size = 17.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/6*(3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b^2
*c^4 + a^2*c^5)*x + sqrt(1/2)*(b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 - (a^5*b^5 - 7*a^
6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c
)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*
b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c
+ 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^
2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x - sqrt(1/2)*(b^8 - 8*a*b^6*c +
20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 - (a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b
^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b
^2 - 4*a^6*c))) + 3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6
*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c
^3 - 3*a*b^2*c^4 + a^2*c^5)*x + sqrt(1/2)*(b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 + (a^
5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^
2 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*
c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c
^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x - sqrt(1/2)*(b^8 -
8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 + (a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6
*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*
c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11
*c)))/(a^5*b^2 - 4*a^6*c))) - 6*b*x^2 + 2*a)/(a^2*x^3)

________________________________________________________________________________________

Sympy [A]  time = 2.72619, size = 211, normalized size = 1.08 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (256 a^{7} c^{2} - 128 a^{6} b^{2} c + 16 a^{5} b^{4}\right ) + t^{2} \left (- 80 a^{3} b c^{3} + 100 a^{2} b^{3} c^{2} - 36 a b^{5} c + 4 b^{7}\right ) + c^{5}, \left ( t \mapsto t \log{\left (x + \frac{- 96 t^{3} a^{7} b c^{2} + 56 t^{3} a^{6} b^{3} c - 8 t^{3} a^{5} b^{5} - 4 t a^{4} c^{4} + 32 t a^{3} b^{2} c^{3} - 40 t a^{2} b^{4} c^{2} + 16 t a b^{6} c - 2 t b^{8}}{a^{2} c^{5} - 3 a b^{2} c^{4} + b^{4} c^{3}} \right )} \right )\right )} + \frac{- a + 3 b x^{2}}{3 a^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(c*x**4+b*x**2+a),x)

[Out]

RootSum(_t**4*(256*a**7*c**2 - 128*a**6*b**2*c + 16*a**5*b**4) + _t**2*(-80*a**3*b*c**3 + 100*a**2*b**3*c**2 -
 36*a*b**5*c + 4*b**7) + c**5, Lambda(_t, _t*log(x + (-96*_t**3*a**7*b*c**2 + 56*_t**3*a**6*b**3*c - 8*_t**3*a
**5*b**5 - 4*_t*a**4*c**4 + 32*_t*a**3*b**2*c**3 - 40*_t*a**2*b**4*c**2 + 16*_t*a*b**6*c - 2*_t*b**8)/(a**2*c*
*5 - 3*a*b**2*c**4 + b**4*c**3)))) + (-a + 3*b*x**2)/(3*a**2*x**3)

________________________________________________________________________________________

Giac [C]  time = 2.42314, size = 6892, normalized size = 35.16 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

1/2*(3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4
*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3
)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/2*real
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 9*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sq
rt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*im
ag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sq
rt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*
b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*
b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^
2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^3 - 4*(a*c
^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*ab
s(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*
a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*cosh(1/
2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
)) - ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a*c^
3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*
imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan(-((a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))) - x)/((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(a^3*b^2*c^2 - 4*a^4*c^3)
 + 1/2*(3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*r
eal_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(
1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*
c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*r
eal_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 9*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)
*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2
*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)
*sqrt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/
4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sq
rt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/
4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*
b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/
2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)
*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^3 - 4*(
a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a
*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/
4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*cosh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c
))))) - ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a
*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1
/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan(-((a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*
b/(a*abs(c)))) - x)/((a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(a^3*b^2*c^2 - 4*a^4*c
^3) - 1/4*(((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*
real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 3
*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(
arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/
2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3
/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^
(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^
(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2
*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 9*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a
*c)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - ((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c
)*b^2)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))^3 + 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos
(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b
/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^
(1/4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*c
os(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*ab
s(c))))) - ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c -
 (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin
h(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(-2*x*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(a^3*b^2*c^2 - 4*a^4*c^3) - 1/4*(((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b
*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*co
sh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^
3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_
part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2
- 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_pa
rt(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*i
mag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*s
qrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsi
n(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*i
mag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*s
qrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 9*((a*c^3)^(3/4)
*b^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt
(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsi
n(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - ((a*c^3)^(3/4)*b
^3 - 4*(a*c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a
*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + 3*((a*c^3)^(3/4)*b^3 - 4*(a*
c^3)^(3/4)*a*b*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b^2)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*a
bs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt
(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*a*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3
)^(1/4)*b^3*c - (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a
*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(1/4)*b^4*c - 5*(a*c^3)^(1/4)*a
*b^2*c^2 + 4*(a*c^3)^(1/4)*a^2*c^3 + ((a*c^3)^(1/4)*b^3*c - (a*c^3)^(1/4)*a*b*c^2)*sqrt(b^2 - 4*a*c))*cos(1/4*
pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))
))*log(-2*x*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(a^3*b^2*c^2 -
 4*a^4*c^3) + 1/3*(3*b*x^2 - a)/(a^2*x^3)